LES Study on the Structure of Coherent Eddies Inducing Predominant Perturbations in Velocities in the Roughness Sublayer over Plant Canopies
نویسنده
چکیده
Large-eddy simulations (LESs) were performed for neutrally-stratified turbulent flows within and above a homogeneous plant canopy. 100 realizations of a three-dimensional turbulence field obtained from each of four LES runs, which di¤er in the driving force of the flow and the size of computational domain, were used in the present study. A conditional sampling technique was used to construct ensemble-averaged images of coherent eddies that induce predominant perturbations in the streamwise and vertical velocities near the canopy top. To reduce subjectivity, wavelet analysis was adopted for triggering the conditional sampling. Synthesis of the present study and numerous previous studies indicated that, in the canopy turbulence, the spatial scale of eddies that induce predominant perturbations in the streamwise velocity is generally three times larger than that of eddies that induce predominant perturbations in the vertical velocity, irrespective of whether concerning field observations, windtunnel experiments or numerical simulations. Therefore, scales of both eddies are mostly determined by a mechanism inherent in the roughness sublayer. An analysis of the ensemble-averaged results and each realization revealed several findings: (1) the smaller eddies that cause predominant perturbations in the vertical velocity are vortices that accord with the so-called mixing-layer (ML) analogy, which is widely accepted as a mechanism of coherent eddies developing near the canopy top; however, (2) the larger eddies inducing predominant perturbations in the streamwise velocity are not vortices and are much larger than expected from the ML analogy; (3) these eddies are streamwise-elongated motions of high-speed downdraft and low-speed updraft, having characteristic features such that the high-speed downdraft penetrates into the canopy and cross-streamwise spreads inside the canopy thus inducing low-speed updraft to the sides of the downdraft and that the low-speed updraft produces a lifted (higher than the canopy top) shear zone beneath an overriding high-speed motion thereby enhancing the shear instability in that area; (4) the high-speed and low-speed motions aligning side-by-side bear a close resemblance to streaky patterns observed in a near-surface region of planetary boundary layers, although the spatial scales are quite di¤erent.
منابع مشابه
An LES study on the structure of coherent eddies in the roughness sublayer over a homogeneous plant canopy
متن کامل
Abstract to Turbulence and Scalar Transport in Roughness Sub-layers SPATIAL HOMOGENEITY IN THE FOREST ROUGHNESS SUBLAYER?
to Turbulence and Scalar Transport in Roughness Sub-layers SPATIAL HOMOGENEITY IN THE FOREST ROUGHNESS SUBLAYER? Ebba Dellwik, Sven-Erik Gryning, Ferhat Bingöl & Jakob Mann Risø National Laboratory For forested surfaces, the roughness sublayer is defined as a layer with enhanced eddy diffusivity compared to inertial sublayer scaling (e.g. Cellier and Brunet, 1992). In urban areas, the roughness...
متن کاملShallow flows over a permeable medium: the hydrodynamics of submerged aquatic canopies Citation
Aquatic flow over a submerged vegetation canopy is a ubiquitous example of flow adjacent to a permeable medium. Aquatic canopy flows, however, have two important distinguishing features. Firstly, submerged vegetation typically grows in shallow regions. Consequently, the roughness sublayer, the region where the drag length scale of the canopy is dynamically important, can often encompass the ent...
متن کاملModified Structure Function Model Based on Coherent Structures
In the present study, a modified Structure Function was introduced. In this modified Structure Function model, the coefficient of model was computed dynamically base on the coherent structure in the flow field. The ability of this Modified Structure Function was investigated for complex flow over a square cylinder in free stream and a low aspect ratio cylinder confined in a channel. The Results...
متن کاملInteraction between large and small scales in the canopy sublayer
[1] Two characteristics that distinguish canopy sublayer (CSL) turbulence from its atmospheric surface layer (ASL) counterpart are short-circuiting of the energy cascade and formation of Kelvin-Helmholtz (KH) vortices near the canopy top. These two phenomena lead to nonlinear and poorly understood interactions between small and large scale eddies within the CSL absent from classical ASL turbule...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009